Instructional Videos With Purpose: Compensate, Support and Challenge Students’ Learning

Dan Cernusca, Ph.D.
Instructional Design Specialist

Daniel Forciniti, Ph.D.
Professor of Chemical & Biological Engineering

Missouri University of Science and Technology

TLT Conference - Rolla, March 2010
It started with...

Instructor’s desire to enhance students’ academic experience & performance.
Identify Needs To Address

Major Worked Examples

Prior Knowledge/Skills

Open-ended Applications

Compensate Support Challenge
Why Instructional Videos?

Multimodal instructional environment (text/audio/video);

Able to convey instructor’s perspectives in a focused manner;

User-friendly video software available;
Startup Production Strategy

How?

• decide on the focal topic;
• select the material to include;

• create a protocol to present the selected material;
• record the audio associated with the selected material;
Startup Production Strategy

How?

• convert the material in images;
• integrate images and audio (Camtasia Studio 6);
• include animated pointers & highlights to guide the viewer;
• set the length of the video between 7 and 10 minutes;
Startup Production Strategy

Why image-based videos?

- gives the instructor the ownership of the material of the video;
- allows for split of responsibilities yet keeps a nice flow of the teamwork;
- gives flexibility on the recording of the audio;
- decreases the size of the final output;
Startup Production Strategy

Why image-based videos?

- allows for a mix of various materials
Startup Production Strategy

Why image-based videos?

• allows instructor to maintain focus on those parts of the image that are important;

• allows for animation to became effective guide of students’ attention
5) You can use Mathcad to solve a given problem (for example, using Maple). For example, suppose you want to calculate the derivative of \(f(x) = \ln(x) \) with respect to \(x \).

\[
\frac{d^2}{dx^2} \ln(x)
\]

In Mathcad, after entering the function, click on the derivative operator and choose the variable \(x \). Fill in the blank space by leaving the space (you must be at the end of the expression) choose Symbols > evaluate > symbolic.
Video is Done...Now What?

You can easily make it available in Blackboard;
Video is Done...Now What?

...but it will be more effective if:

• you create a task that requires students to use the video;
• when appropriate provide a text/slides version of the content;
• get students’ perceptions on these videos at midterm and end of the semester;
The end of the video can include a transfer task...

Homework

- **Rework part one** of this problem **assuming** that the steam at 15 bar is wet \((x=0.992)\). Write your own MathCad Program.

- **Rework part one** of this problem **but use** steam at 18 bar to fill the tank. Write your own MathCad Program.

- **Convince yourself** that the potential and kinetic energy of the streams are small compared to either their internal energy or enthalpy.
What we have so far?

Three short compensatory videos

• one related to calculus;
 • created from scratch, outside the classroom, mostly with handwritten materials

• two related to Mathcad;
 • audio for the first one recorded in the course combined with screenshots;
 • audio for the second one recorded mostly outside the class;
What we have so far?

One supporting video

- a major worked example introduced in the classroom;
- audio recorded in classroom for reference;
- final audio recorded outside the classroom;
- slides converted to images and overlapped on the audio;
Here they are!

...at least at the time of this presentation

Calculus Video

Mathcad Video

Worked Example
Why it worked out?

- The instructional designer added value in selecting the topic and in using of the videos but...

- The instructor had full ownership of the content and focus of these videos;

- Significant time was saved by using an effective and productive division of labor;
Contact Information

Dan Cernusca, Ph.D.

207 Norwood Hall (CERTI office)

(573) 341 4632

dcernusca@mst.edu